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AImtract--The terminal settling velocities and rotation rates of spherical particles settling in circular and 
square conduits were investigated experimentally and numerically with the aim to benchmark the 
numerical predictions using the boundary element method. Spheres were allowed to settle in viscous 
Newtonian fluid under conditions such that only hydrodynamic forces exerted an appreciable effect. The 
terminal settling velocities and the rotation rates were measured as a function of the size and density of 
the falling sphere, the drop position of the sphere in the conduit and the dimensions and geometry of the 
containing vessel or conduit. The experimental measurements were subjected to an exacting error analysis 
and compared with fully three-dimensional boundary element calculations. We found that the results of 
the experiments and numerical simulations showed remarkable agreement within the bounds of exper- 
imental error. 
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I N T R O D U C T I O N  

Stokes (1851) provided an exact analytical solution for a sphere settling in an unbounded 
Newtonian fluid at zero Reynolds number. The result is known today as Stokes' law (e.g. Bird et al. 

1960). The terminal velocity of  the sphere, Ut, is given by 

Ut = 2a2(pP - pf)g  [1] 
9/Zf 

where a is the radius of  the sphere, pp is the density of  the falling sphere, g is the gravitational 
constant, and pf and #f are the density and viscosity of  the Newtonian fluid, respectively. Stokes' 
problem is somewhat artificial, as Brenner and his coworkers (Brenner 1962; Pliskin & Brenner 
1963) have shown that bounding walls have an effect on the solution even when the bounding walls 
are at infinity. Although the effect of  bounding walls has been the subject of  numerous 
investigations (Happel & Brenner 1986) following Fax6n (1921) initial reflection solutions, various 
computational and experimental difficulties have prevented a complete investigation of  the 
problem. This study considered wall and end effect for spheres settling through Newtonian 
fluids in circular and square conduits. Careful experiments and fully three-dimensional boundary 
element calculations of  terminal settling velocities and rotation rates were performed for spheres 
settling along the centedine and eccentrically in the conduits over a wide range of  experimental 
parameters. 

Spheres settling along the centerhne in circular cylinders have been the subject of  many 
theoretical, numerical and experimental studies. For  example, Ladenburg (1907), Bacon (1936) and 
Fidleris & Whitmore (1961) reported on generally careful experiments measuring the terminal 
velocity of  spheres settling along the centerline of  circular cylinders far from the upper free surface 
and fixed end of  the container. Eulerian and Lagrangian flow visualization around a sedimenting 
sphere settling in a circular cylinder was reported in Coutanceau (1968, 1987). Coutanceau 
(1971a,b) also obtained a wall correction for a sphere settling along the axis of  a circular cylinder. 
Following Fax6n's reflection solution to account for the presence of  circular containing walls in 
an infinite tube, there have been numerous attempts to extend his work. A good review of  the 
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analytical efforts to account for the presence of the containing walls was given by Happel & Brenner 
(1986). This problem has also received a greal deal of attention from the numerical modelling 
community (e.g. Graham et al. 1989; Lunsmann et al. 1989; Zheng et al. 1990). Aside from 
extending the results to very large spheres, the inclusion of these results in this study was primarily 
for benchmarking our techniques. 

Reported experimental data for square containers at low Reynolds numbers, appear to be limited 
to terminal velocities of spheres falling along the centreline of square containers (Miyamura et al. 

1981). Tachibana (1973) also considered settling spheres in a square cylinder, but at a minimum 
sphere Reynolds number of about 7. Analytical studies (Happel & Bart 1974) have been performed 
for small spheres by a reflection solution. In this investigation, the computed values of the Stokes' 
law wall correction factor, for spheres settling along the centreline of square ducts, were compared 
with Miyamura et al.'s (1981) results and our own experimental results which were obtained over 
a wider range of dimensionless sphere sizes. The numerical predictions using the boundary element 
method (BEM) were found to be indistinguishable from our experimental measurements over the 
range of our data, although they tended to be somewhat larger than Miyamura et al.'s results for 
very large dimensionless spheres. 

Spheres settling off the centreline, or eccentrically, in circular and square conduits have received 
more limited attention. Trzeren (1982) calculated torque on eccentric spheres falling in tubes. 
Experimental observations by Craig (1951) and Bart (1959) were reported by Happel & Brenner 
(1986) to be unable to resolve the slight maximum in the terminal settling velocity predicted 
by Brenner and his coworkers (Hirschfeld et al. 1984) as the sphere moved outward towards 
the containing cylinder walls. Previous numerical studies have been unable to resolve the 
relatively small angular velocities associated with the off-centre drops. There appear to be 
no reliable measurements of the angular velocity to compare to the reflection solution results 
predicted by Happel & Brenner (1986) and Hirschfeld et al. (1984) for small spheres. As we will 
demonstrate, the angular velocity predictions of the BEM were, generally, in good agreement 
with their results for small falling spheres near the centreline. For larger spheres or spheres 
approaching the containing walls, qualitatively similar behaviour was observed, but the numerical 
predictions are considered to more accurately model the particle rotations than the analytical 
predictions. In square conduits, where no analytical predictions or previous experimental 
measurements are available, our numerical predictions and experimental measurements of the 
angular velocities of eccentric falls were found to be in close agreement over the entire range of 
our data. 

Experimental data for spheres approaching the bottom of circular cylinders were given by 
Sutterby (1973a,b) and for larger spheres by Graham et al. (1989). Reflection solutions were 
generated by Tanner (1963) and Sonshine et al. (1966a,b) and were limited to small falling spheres 
several sphere diameters from the bottom of a circular cylinder. In this study, large falling spheres 
were considered settling on the centreline and eccentrically, in circular and square containing 
vessels. Both terminal linear and angular velocities were measured. Additionally, in this study, small 
and large sphere trajectories were measured in the region approaching the bottom of a square 
conduit along the centreline of the vessel. All experimental data were subjected to a rigorous error 
analysis to determine the error bars on the data. 

BEM predictions were made in this paper for end effects in square conduits from a series 
of "quasi-static" steps (Happel & Brenner 1986). In the square conduits the end effects predicted 
by the BEM calculations and experimental measurements were found to be qualitatively 
similar. 

A brief discussion of the BEM model and boundary conditions will be made in the following 
section, followed by a description of the experimental apparatus and technique along with data 
reduction procedure. A comparison of the experimental findings and BEM predictions with the 
available literature is the subject of the third section. The final section will summarize the 
conclusions and discuss the implications for future research in the area of modelling Stokes' flows 
with the BEM. 

The overall aim of the reported work was to benchmark the BEM against the experimental data 
for single spheres dropped axially and eccentrically in circular and square cylinders filled with 
quiescent Newtonian liquid. 
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METHOD 
B E M  formulation 

The BEM used to model sedimenting particles is well described by Tran-Cong & Phan-Thien 
(1989). An outline of the method is given here. 

We are concerned here with modelling the isothermal, steady state, creeping flow of a particle 
through an incompressible Newtonian fluid. The governing equations and the constitutive equation 
are, respectively, 

V ' .  = O, [21 

V • u = 0 [3] 

and 

# = -pl + 2.D [4] 

where a is the total stress tensor or stress dyadic, u is the velocity vector, D is the rate-of- 
deformation tensor, /a is the viscosity, p is the hydrostatic pressure that arises due to the 
incompressibility constraint [3] and I is the unit tensor. The boundary traction field is defined by 

t = n" ~r, [5] 

where n is the unit normal vector pointing outwards from the fluid domain. 
The set of equations [2]-[4] is recast in integral form by using a method involving weighted 

residuals (Bush & Tanner 1983), or by making use of Betti's reciprocal theorem (Banerjee & 
Butterfield 1981). The details are not repeated here, only the resultant boundary integral equation 
(BIE), given as 

C,(x)ui(x) = f u*(x, y) ty(y)dF(y)-  f t*(x, y)u,(y)dF(y), [6] 
38 

where ~ ~ is the boundary of the solution domain ~,  y ~ a ~ ,  uj(y) is the j-component of the velocity 
at y, tj(y) is the j-component of the boundary traction at y, u* (x, y) is the/-component of velocity 
field at x due to a "Stokeslet" in the j-direction at y and t* (x, y) is its associated traction. Here 
C0(x) depends on the local geometry: C0(x ) = 30 if x ~ and C0(x ) = ½60 if x ~ a ~  and a ~  is a 
smooth surface. Details of u* (x, y) and t ff (x, y) for three-dimensional and half-space problems are 
given elsewhere (cf. Brebbia et al. 1984). If the particle is rigid, then a further simplification of [6] 
is possible (Youngren & Acrivos 1975; Tran-Cong & Phan-Thien 1986). However, a more general 
approach will be adopted here, as follows. 

The BIE [6] can be generalized to multiconnected regions (Rizzo 1967) without much difficulty. 
In this case d ~  = S u SI u . - .  S~, where S or S~ is the boundary of a typical singly-connected 
region. Either u or t must be prescribed on every part of the boundary c~ .  

An analytical solution of [6] is not possible in general. However, if the boundary a ~  is divided 
into a series of M elements over which the geometry, velocity and traction are approximated by 
piecewise polynomials, an approximate solution may be obtained. 

Thus, approximating velocity and traction over an element by 

uj = N'uT,  tj = N' t~ ,  [71 

where N ", ~ = 1 . . . . .  n, is the interpolating polynomial (shape function) and uj is thejth component 
of velocity at node ~, the BIE [6] in discretized form now reads 

= y)N" dS(y) u} - t*(x, y)N" dS(y) t} [8] 
q = 1 Rq Rq 

This equation, applied to a series of collocation points (usually, but not necessarily the nodal 
points) over the boundary, leads to a set of linear algebraic equations. Given the appropriate 
traction and velocity boundary conditions, these equations can be solved (by Gaussian elimination) 
for the remaining boundary values. 
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Numerical implementation 

Numerical calculations were performed with an Ardent Titan workstation using a 4-byte word 
length. Double-precision arithmetic was used throughout, except in a disk-based Gaussian 
elimination solver operation to reduce memory and storage requirements. Isoparametric trilateral 
and quadrilateral boundary elements were used in all simulations. Typical discretizations applied 
to the simulations are shown in figure 1, for the case of sedimentation of a single sphere in a circular 
cylinder. 

It should be noted that the pressure was set to zero at a point on the end flow domain, to avoid 
an indeterminate pressure field. The latter would occur if only velocity boundary conditions were 
specified. 

Further details of the discretization scheme and its numerical implementation using a constant 
boundary element are reported elsewhere (Tullock et al. 1992). 

E X P E R I M E N T A L  

Test conduits, their alignment and test liquid 

The experiments were conducted in circular and square# conduits containing quiescent test liquid 
and having a closed bottom end, while the upper surface of each cylinder was open to the 
atmosphere. The open end accommodated a removable lid containing the test particle releasing 
fixture. 

The circular conduit (59.15 mm bore x 380 mm deep) was made from 2.5 mm thick glass. The 
small square conduit (49.17 x 49.95 x 380 mm) was made from 10 mm thick polymethyl methacry- 
late (PMMA) sheet and, in the case of the large square conduit (201 x 200 x 900 mm) from sheets 
of 10 mm thick (fish tank) glass. The largest dimension in all cases indicates the approximate depth 
of  liquid in a tank. The above square tanks will be referred to by their nominal dimensions (50 x 50 
and 200 x 200 mm, respectively) in the remainder of this paper. Vertical alignment of the tanks was 
effected by the use of a spirit level and plumb line. The two video cameras used to record the start 
and finish of a settling sphere traverse, were levelled against the timing marks (in line with the centre 
of each lens) on each tank with the aid of an in-built spirit level. These settings were finely adjusted 
by comparing the picture from each camera against two orthogonal video pointer cross-hairs 
projected on the top of the monitor image such that the cross-hairs coincided with the horizontal 
timing marks and the vertical edge of the cylinder. The latter was previously aligned with the plumb 
line. In the case of the small square conduit, a further check of  the tank alignment was provided 
by releasing a small sphere from a fixture at the top of the vessel into a matching hole in the bottom 
surface directly below. 

The liquid temperature was controlled by the environmentally controlled laboratory atmosphere 
to within + 1.0°C. 

The test liquid was Gensil 150/12,500 dimethylpolysiloxane (silicone oil) manufactured by the 
Bevaloid Australia Pty Ltd. The specific gravity of this liquid was 0.974 (measured with a 900/1000 
S&B Hills Pty Ltd hydrometer) and the viscosity 14.5 Pa s (measured with a PSL 1619/8 BS/U 
size H capillary viscometer). Both measurements were made at 20.0°C. 

The basically Newtonian nature of the fluid as well as temperature dependence (in the range 10.0 
to 30.0°C) of its viscosity were determined, up to shear rates of 34 s- ' ,  with an Instron 3250 
rheometer and water-cooled Carri-Med controlled stress rotating cone rheometer, respectively. The 
obtained values for viscosity at 20.0°C agreed well with that obtained using the capillary 
viscometer. 

Apparatus, data collection and processing 

At the start of an experiment, the particle to be dropped was held by vacuum in the required 
position in the test conduit fixture lid and, in the case of eccentric drops, it was fully immersed 
in the tank liquid prior to its release. Two video cameras (Panasonic WV-BL200) with 420 

#Purists will argue that, from the given tank dimensions, it would be more appropriate to call them rectangular. While 
acknowledging that, we shall still refer to them to what their nominal dimensions purport them to be, because no 
significant affects on our data were found for the range of experimental parameters used. 
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Z 

Figure 1. Typical mesh used in eccentric drop BEM calculations for an a/R = 0.506 sphere settling in a 
circular cylinder. 

horizontal line resolution at the centre, were each fitted with a Computar lens ( f =  1:1.2, 
12.5-75 mm zoom) and focused, one on the top and the other on the bottom timing marker on 
the conduit outside walls. A video splitter (American Dynamics 1470 A) was used to provide a 
simultaneous view of the two images on the monitor (National WV-5410E/A) screen whose 
resolution was more than 850 lines at the centre. The displayed combined image was recorded on 
a SVHS VCR (Panasonic NVFS 100A). Superimposed on the combined image on the monitor 
screen image were the time (to one-hundredths of a second) and date from the National time/date 
generator WJ-810. The VCR was manually activated each time a particle approached the timing 
line such that, on tape replay, the starting and finishing time of the settling particle could be 
accurately determined. 

The recorded image was played back on the VCR and displayed on the video monitor. With 
the aid of a single-frame advance and still-image facility, the time interval between the timing 
markers (a known distance apart) could be read off the tape, to yield the particle settling velocity. 
The top marker was placed far enough from the particle drop point to ensure that the terminal 
velocity was reached and that the bottom marker was well away from the conduit end such that 
no detectable end-effects were introduced. 

The measurement of a particle angular velocity required the use of a video pointer (Colorado 
Video 610E) equipped with independently movable orthogonal cross-hair images. The pointer 
provided two voltage output signals the magnitude of which corresponded to the position of the 
cross-hair x - y  coordinates on the monitor screen. This voltage signal was digitized with a PC 
resident, 8-bit A/D converter and its value displayed on the PC monitor for manual recording. 
Each sphere was marked with a black dot about 1 mm dia and oriented such that this reference 
mark always faced the cameras. The sphere was held by vacuum applied to a small holding 
cylinder, which ensured that, when suction was removed, the sphere separated without any initial 
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Table 1. Typical components of the fractional error in the Stokes' law wall correction factor for sedimentary spheres in 
square cylinders 

d [mm] 6H/H 6t/t 6d/d 6M/M Opf/pf Og/g ¢~li/li 6K/K 
1.89 0.002 0.0031 0.0074 0.0039 0.0001 2.04 x 10 -7 0.013699 0.0303 

19.99 0.002 0.0031 0.0007 0.0000 0.0001 2.04 × 10  - 7  0.013699 0.0197 

rotation. Therefore, on a still image, it was only necessary to take three vertical pointer 
measurements to obtain the angular displacement of  the sphere. From two sets of such 
measurements (one at each timing mark), the angular velocity of  the particle could then be readily 
deduced. 

Scope o f  the experiments 

Experimental tests were restricted to evaluating the Stokes' law wall correction factor in square 
conduits for a range of  sphere sizes (1.89-39.93 mm dia) made from steel or aeetal resin (Delrin). 

In addition, the effect of eccentric drops on settling and angular velocities was measured in square 
and circular cylinders with a 6.40 and 12.85 mmdia  PMMA spheres in a square section and 
6.35 mm dia ruby and 29.95 mm dia Delrin spheres in a circular tank. 

The effect of  the end surface on the settling velocity of  a 3.15 mm dia aluminium sphere and a 
29.95 mm dia Delrin sphere in a square (50 × 50 mm) tank was also determined. 

Error analysis 

The Stokes' law wall correction factor may be defined (e.g. Clift et al. 1978) as 

K = U~ [9] 

where Ut is the terminal velocity of a sphere diameter d and density pp falling vertically in a fluid 
of  density pf whose viscosity #r was denoted by #~ to emphasize its relationship with U~ obtained 
from the Stokes' law and applicable to an unbounded fluid. 

Therefore, 

K = d2(pp - pf)g At 
18Uoo AH [10] 

Here g denotes the local gravitational constantt  (9.796720 _+ 2 x 10-6m s -2) and At is the 
time taken for a sphere to fall through a vertical distance AH while falling with the terminal 
velocity. 

Following Topping (1966) and Shoemaker & Garland (1962), and denoting the mass of  a sphere 
by M, it can be shown that the fractional error associated with K is 

pf ~zd 3 
I + - -  

6K dill dit 3M did { 1 \diM I dipr dig di/~ 
. . . .  + - -  + -  [ 1 1 l  
K H q- t -b pfrcd 3 d + I Pfltd3 ) M "q 6M 1 pf g I,t~ 

1 - 6--if- 1 - - U d -  / 

Typical values of  the above fractional error are shown in table 1. As the major error component 
was due to the measurement of  sphere size and viscosity of  the tank liquid, the error tended to 
be greater for small spheres all else being the same. 

Determination of the experimental random error associated with the evaluation of  particle 
settling and rotational velocities was performed in a similar way. On average, the fractional error 
associated with a settling velocity measurement was typically < + 2%, while the more complex 
measurement of the angular velocity incurred an error of around _+ 13%. 

The systematic error associated with the asymmetry of  the square tank cross-section dimensions 
was found to depend on sphere size relative to the tank cross-sectional area. On this basis, the 
magnitude of  this error was < + 1%. 

tCourtesy of H. Groeveld, CSIRO. 
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R E S U L T S  AND D I S C U S S I O N  

T h e  w a l l  e f f e c t  

The applicability of  Stokes' law to the experimental data analysis was determined on the basis 
of  negligible inertia effects reflected by the low Reynolds number ( U t d / v r )  range (0.0001-0.1070) 
for the spherical particles used in the tests described here. 

Figure 2 and table 2 show that our data and the BEM estimate of  K agree remarkably well over 
the whole range of  d / 2 L (  = a l L ) ,  where L denotes a half-length of the square tank side. The only 
applicable square tube wall corrections that the authors are aware of  are those of  Miyamura e t  

al.  (1981) and Happel & Bart (1974). While the former is based on a nineteenth degree polynomial 
fit to their experimental data, and the latter was analytically derived, the Miyamura e t  al. (1981) 
correlation was in better agreement with our data, except for large values of a / L  (in excess of  

0.75). This seems surprising, as their test section (10 x 10 mm) was much smaller than ours. 
Happel & Bart (1974) reported a simple, square tank wall correction obtained with the method 

of  reflections, 

1 
K = 1.903266a ' [12] 

1 
L 

which described the BEM prediction (and hence our experimental data) very well up to a / L  .~ 0.25 
only. 

Basing the equivalent radius of  a fictitious circular cylinder on the cross-sectional area of  the 
square tank, we compared the established circular cylinder wall corrections of  Bohlin (1960) and 
Haberman (1958) with our square tank data. As can be seen from figure 1, the agreement was very 
good with the former [being comparable with the Miyamura e t  al. (1981) correlation], while the 
latter was satisfactory only up to a l l  ,~ 0.4. In addition, the wall correction by Coutanceau 
(1971a,b) for a sphere falling in a circular cylinder shows remarkable agreement with the BEM and 
our experimental data over the whole range of sphere sizes. 

The overall performance, in terms of the prediction error with respect to the experimental data, 
of  the various wall corrections used for the square tube is summarized in table 3. It should be noted 
that the error associated with the BEM prediction of  the experimental data presents an upper 
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Figure 2. Comparison of estimates of the Stokes' law wall correction factor K--using the BEM, Bohlin 
(1960), Coutanceau (1971a,b), Haberman & Sayre (1958), Miyamura et al. (1981) and Happcl & Bart 

(1974)--with the experimental data, Ilic 0992), in a square tube for a range of sphere sizes. 



d
/2

L
 

0
.0

0
0

~
 

0.
00

94
5 

O
.O

24
9O

 
0.

03
78

O
 

0.
04

99
0 

0.
05

00
0 

0.
05

04
0 

0.
07

49
5 

0.
09

96
0 

0.
09

97
0 

0.
09

99
5 

0.
10

00
0 

0.
14

97
1 

0.
15

00
0 

0.
19

96
0 

0.
20

00
0 

0.
20

16
0 

0.
24

97
5 

0.
25

00
0 

0.
29

98
0 

0.
30

00
0 

0.
35

00
0 

0.
39

88
0 

0.
39

98
0 

0.
40

00
0 

0.
45

00
0 

0.
50

00
0 

0.
55

00
0 

0.
59

88
4 

0.
60

00
0 

0.
65

00
0 

0.
70

00
0 

0.
75

00
0 

0.
79

86
0 

0.
80

00
0 

0.
85

00
0 

0.
90

00
0 

T
ab

le
 2

. 
P

re
di

ct
ed

 a
n

d
 m

ea
su

re
d

 (
pr

es
en

t 
w

or
k)

 v
al

ue
s 

o
f 

th
e 

S
to

ke
s'

 w
al

l 
co

rr
ec

ti
on

 f
ac

to
r 

K
 f

or
 s

in
gl

e 
sp

he
re

s 
in

 a
 s

qu
ar

e 
ta

n
k

 f
al

li
ng

 a
lo

ng
 i

ts
 a

xi
s 

a
/R

 
B

E
M

 
B

oh
li

n 
(1

96
0)

 
C

o
u

ta
n

ce
au

 (
19

71
a,

b)
 

H
ab

er
m

an
&

S
ay

re
 (

19
58

) 
H

a
p

p
e

l&
B

a
rt

 (
19

74
) 

P
re

se
nt

 w
or

k 

0.
00

00
00

 
1.

00
00

00
 

1.
00

00
00

 
1.

00
00

00
 

1.
00

00
00

 
1.

00
00

00
 

0.
00

83
75

 
1.

01
79

39
 

1.
01

79
13

 
1.

01
79

44
 

1.
01

83
15

 
1.

02
61

62
 

0.
02

20
67

 
1.

04
86

75
 

1.
04

86
75

 
1.

04
86

89
 

1.
04

97
49

 
1.

07
10

10
 

0.
03

34
99

 
1.

07
57

53
 

1.
07

57
79

 
1.

07
57

75
 

1.
07

75
21

 
1.

09
37

93
 

0.
04

42
23

 
1.

10
23

94
 

1.
10

24
27

 
1.

10
24

24
 

1.
10

49
39

 
1.

12
27

60
 

0.
04

43
11

 
1.

10
56

65
 

1.
10

26
19

 
1.

10
26

52
 

1.
10

26
50

 
1.

10
51

72
 

0.
04

46
66

 
1.

10
35

22
 

1.
10

35
55

 
1.

10
35

52
 

1.
10

61
02

 
1.

09
41

62
 

0.
06

64
23

 
1.

16
16

71
 

1.
16

16
86

 
1.

16
17

20
 

1.
16

63
85

 
1.

18
31

57
 

0.
08

82
68

 
1.

22
59

76
 

1.
22

60
11

 
1.

22
60

40
 

1.
23

39
06

 
1.

23
61

91
 

0.
08

83
57

 
1.

22
62

50
 

1.
22

62
85

 
1.

22
63

14
 

1.
23

41
96

 
1.

24
95

22
 

0.
08

85
78

 
1.

22
69

35
 

1.
22

69
71

 
1.

22
69

99
 

1.
23

49
21

 
1.

26
13

95
 

0.
08

86
23

 
1

.2
3

3
2

5
9

 
1.

22
70

72
 

1.
22

71
08

 
1.

22
71

37
 

1.
23

50
66

 
0.

13
26

77
 

1.
37

81
27

 
1.

37
85

69
 

1.
37

81
42

 
1.

39
84

8 
1.

41
22

92
 

0.
13

29
34

 
1.

38
96

57
 

1.
37

91
01

 
1.

37
95

48
 

1.
37

91
16

 
1.

39
95

6 
0.

17
68

91
 

1.
56

46
90

 
1.

56
57

24
 

1.
56

42
12

 
1.

61
26

22
 

1.
58

49
79

 
0.

17
72

45
 

1.
58

29
32

 
1.

56
63

53
 

1.
56

73
90

 
1.

56
58

66
 

1.
61

46
04

 
0.

17
86

63
 

1.
57

30
33

 
1.

57
40

83
 

1.
57

25
14

 
1.

62
25

82
 

1.
62

10
45

 
0.

22
13

35
 

1.
79

78
48

 
1.

79
89

03
 

1.
79

52
57

 
1.

90
59

99
 

1.
82

25
08

 
0.

22
15

57
 

1.
82

39
55

 
1.

79
91

47
 

1.
80

02
00

 
1.

79
65

37
 

1.
90

77
29

 
0.

26
56

91
 

2.
09

03
05

 
2.

09
07

16
 

2.
08

07
66

 
2.

32
88

26
 

2.
11

67
03

 
0.

26
58

68
 

2.
12

76
10

 
2.

09
16

18
 

2.
09

20
25

 
2.

08
20

32
 

2.
33

08
93

 
0.

31
01

79
 

2.
51

45
92

 
2.

46
34

38
 

2.
46

35
70

 
2.

43
37

96
 

2.
99

52
95

 
0.

35
34

27
 

2.
92

94
41

 
2.

93
10

58
 

2.
84

87
48

 
4.

14
97

65
 

2.
99

75
93

 
0.

35
43

14
 

2.
94

02
94

 
2.

94
19

67
 

2.
85

79
94

 
4.

18
28

01
 

3.
01

35
78

 
0.

35
44

91
 

3.
01

41
02

 
2.

94
24

72
 

2.
94

41
56

 
2.

85
98

47
 

4.
18

94
71

 
0.

39
88

02
 

3.
66

82
89

 
3.

56
88

97
 

3.
57

46
76

 
3.

35
49

95
 

6.
96

71
7 

0.
44

31
13

 
4.

53
90

75
 

4.
40

18
23

 
4.

41
40

35
 

3.
88

17
35

 
20

.6
75

25
 

0.
48

74
25

 
5.

53
06

80
 

5.
55

31
79

 
4.

34
52

77
 

0.
53

07
08

 
7.

05
53

34
 

7.
09

90
89

 
4.

58
88

65
 

7.
34

19
24

 
0.

53
17

36
 

7.
35

36
17

 
7.

09
82

41
 

7.
14

27
23

 
4.

59
08

45
 

0.
57

60
47

 
9.

66
96

27
 

9.
36

22
81

 
9.

44
25

40
 

4.
47

34
97

 
0.

62
03

59
 

13
.0

41
71

0 
12

.9
23

15
0 

12
.9

06
18

0 
3.

98
14

07
 

0.
66

46
70

 
18

.1
04

53
0 

19
.9

17
70

0 
18

.3
25

76
0 

3.
26

47
91

 
0.

70
77

41
 

45
.8

64
40

0 
26

.8
07

86
0 

2.
53

66
15

 
25

.8
70

88
0 

0.
70

89
82

 
25

.9
74

81
0 

47
.8

60
08

0 
27

.1
20

04
0 

2.
51

65
49

 
0.

75
32

93
 

38
.6

93
87

0 
42

.1
45

04
0 

1.
85

93
44

 
0.

79
76

04
 

60
.1

42
34

0 
70

.7
53

14
0 

1.
33

25
25

 

M
iy

am
u

ra
 e

t 
al

. 
(1

98
1)

 

1.
00

00
0 

1.
01

83
7 

1.
04

93
7 

1.
07

63
4 

1.
10

27
2 

1.
10

29
4 

1.
10

38
4 

1.
16

13
2 

1.
22

53
8 

1.
22

56
6 

1.
22

63
5 

1.
22

64
8 

1.
38

11
3 

1.
38

21
5 

1.
58

03
5 

1.
58

21
6 

1.
58

94
3 

1.
83

74
2 

1.
83

88
7 

2.
16

36
9 

2.
16

51
5 

2.
57

75
2 

3.
09

03
8 

3.
10

23
4 

3.
10

47
3 

3.
80

07
7 

4.
75

24
5 

6.
06

12
0 

7.
75

64
4 

7.
80

23
4 

10
.1

56
6 

14
.1

73
2 

21
.9

87
4 

20
.5

88
1 

20
.2

33
5 

11
.3

97
3 



TRANSLATION AND ROTATION OF SPHERES SETTLING IN CONDUITS 1069 

bound, as it was based on the linear interpolation between adjacent experimental and calculated 
values of K for a given value of d/2L. 

Table 3 shows that the BEM best described the experimental data, while the Miyamura et al. 
and Bohlin models were also good, except at large sphere diameters. Apart from the BEM, the 
Coutanceau model was the next best over the complete range of sphere sizes. 

The magnitude of the experimental error expressed in terms of the fractional error in K, was 
typically of the order of the symbol size used in figure 2. Table 1 shows that the major component 
of this error was, typically, due to the uncertainty in the sphere size and liquid viscosity 
measurements. 

The effect of eccentricity 
For eccentrically dropped spheres in a circular and a square tank, the settling velocity was deafly 

influenced by the proximity of the container walls with, for the small sphere in a circular cylinder, 
a near constant settling velocity from the tank axis to about midway towards a wall, figure 3. A 
further increase in the eccentricity of the sphere drop resulted in a rapid decrease in the settling 
velocity within the proximity of the wall. However, for the large sphere, the settling velocity was 
much more strongly influenced by the eccentricity of the drop: apart from the region close to the 
tank axis (b/R ,~ 0.05), the settling velocity was not constant, but increased with eccentricity to a 
peak at b/R ,~ 0.38. For greater values of b/R, a rapid decrease in the settling velocity was apparent 
as for the small sphere. As the theoretical analysis of Happel & Brenner (1986) indicated, the drag 
for a small sphere in a circular cylinder does not increase monotonically in the outward direction 
from the cylinder axis towards the wall, but reaches a minimum. This radial variation of drag was 
reflected in varying settling velocity, figure 3. The agreement between the experimental data, the 
reflection solution and the BEM was excellent for the small sphere (air =0.107). While the 
agreement between the experiment and BEM predictions was good for the large sphere 
(a/R = 0.506), the theoretical approach for the small sphere from Happel & Brenner (1986) was 
outside the range of applicability for this case. 

For eccentric drops in a square cylinder, owing to excessive time requirements (several hours of 
CPU time per point on the Ardent Titan minicomputer) for the numerical simulation of this, only 
three point values were evaluated with the BEM. These values were non-dimensionalized with 
respect to the centerline velocity and tabulated with the experimental data in table 4. 

T a b l e  3. P e r c e n t a g e  e r r o r  [100(K - K,~p)/K~,p] in  K r e l a t i ve  t o  o u r  e x p e r i m e n t a l  d a t a  

C o u t a n c e a u  H a b e r m a n  & Sayre  H a p p e l  & B a r t  M i y a m u r a  e t  al. 

d / 2 L  B E M  B o h l i n  (1960)  (1971a ,b )  (1958)  (1974)  (1984)  

0 .00945  - 0 . 8 0  - 0 . 8 0  - 0 . 8 0  - 0 . 7 6  - 0 . 7 6  

0 .0249  - 2.09 - 2 .09 - 2 .08 - 1.99 - 2 .02 

0 .0378  - 1.65 - 1.65 - 1.65 - 1.49 - 1.60 

0 .0499  - 1.81 - 1.81 - 1.81 - 1.59 - 1.78 

0.05 - 1.02 
0 .0504  0.86 0 .86  0.86 1.09 0.88 

0 .07495  - 1.82 - 1.81 - 1.81 - 1.42 - 1.85 

0 .0996  - 0 . 8 3  - 0 . 8 2  - 0 . 8 2  - 0 . 1 8  - 0 . 8 7  

0 .0997 - 1.86 - 1.86 - 1.86 - 1.23 - 1.91 

0 .09995  - 2.73 - 2 .73 - 2 .73 - 2 .10 - 2.78 

0.1 - 2 . 2 4  
0.14971 - 2 .42 - 2 .39 - 2 .42 - 0 . 9 8  - 2.21 

0.15 - 1.67 
0 .1996  - 1.28 - 1.21 - 1.31 1.74 - 0 . 2 9  

0.2 - 0 . 5 8  
0 .2016  - 2 .96 - 2 .90 - 2 .99 0.09 - 1.95 

0 .24975  - 1.35 - 1.30 - 1.50 4.58 0 .82  

0.25 - 0 . 0 0  
0 .2998 - 1.25 - 1.23 - 1.70 10.02 2.22 

0.3 

0.35 
0 .3988  - 2 .27  - 2 .22 - 4 . 9 7  38.44 3.10 

0 .3998 - 2.43 - 2.38 - 5.16 38.80 2.95 

0 .59884  - 3.90 - 3.31 - 37.50 5.65 

0 .7986  - 0 . 4 5  77.28 3.62 - 9 0 . 2 0  - 2 0 . 4 2  
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Figure 3. Variation of  the dimensionless settling velocity u/u (b  = 0) with the dimensionless drop distance 
b / R  from the axis of  a circular cylinder, 59.15 mm dia, for 6.35 and 29.95 mmdia  spheres. 

It is evident from the data that there is a qualitative agreement between the BEM predictions 
and the experimental values. Specifically, it is noted that the change in the sense of rotation for 
the small sphere was correctly predicted. An experimental error of about + 17% was achieved for 
the angular velocity, while the settling velocity error was about ___ 1% of the values quoted. These 
errors are associated with coordinate measurements from video tapes, resolution of the monitor 
screen, the finite thickness of the video pointer cursor and slight non-sphericity of the PMMA balls. 
Typically, the angular velocity determination required measurement of six vertically colinear 
coordinates compared to two for settling velocity. A density measurement of each sphere was made 
to ensure homogeneity of the material, and no attached air bubbles were seen on the sphere surface 
in the measurement section of the test cylinder. As can be seen from table 5, no rotation of the 
axially dropped spheres was observed in the square tank. The variation of angular velocity with 
drop radius, figure 4, is qualitatively similar to the behaviour of the associated settling velocity. 
Since rotation is purely shear driven, the sphere with the largest surface should be affected the most, 
as illustrated by the data. The small non-zero value of the angular velocity for the large sphere 
at the axis of the cylindrical tank is possibly caused by a small eccentricity of the axial drop. Large 
spheres are particularly sensitive to this, as Graham et al. (1989) noted. 

It is also instructive to compare the experimental with the value of the "Newtonian standard" 
for a i r  = 0.500 of the wall correction factor K for the large sphere settling axially in a cylinder--a 

Table 4. Comparison of  the predicted and measured settling and angular 
velocities of  single P M M A  spheres failing in a (50 x 50 mm) square tank at 

eccentric drop positions relative to the tank axis 

BEM Experimental 

(a) d = 6.40ram, 22 = 49 .17mm 
0.00000 1 - 8 . 7  × 10 -8 1 0 
0.50844 1.004573 0.008769 1.00226 0.004113 
0.81350 0.845963 -0.01634 0.8344854 -0.001712 

(b) d = 12.85rnm, 21+ = 49 .17mm 

0.00000 1 - 1.6 x 10 -8 1 0 
0.50844 1.018004 0.041157 1.002878 0.047785 

b / L  U / U ( b  = O) oJa/U(b = O) U / U ( b  = O) aJa/U(b = O) 
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case well-documented in Waiters & Tanner (1992). They quoted the accepted standard value of 
K for a i r  = 0.500 as 5.947, while the experimentally obtained value for a i r  = 0.506 was 6.084. 
This appears to be reasonable, as increasing values of a i r  imply, for a given cylinder, a larger and 
therefore heavier ball. 

The end-surface effect 

The effect of the end surface on sphere sedimentation along the axis of a square cylinder is shown 
in figure 5 in terms of normalized coordinates of sphere drop height h (t)/h (t = T) and settling time 
t(h = O)/t(h = H), respectively. H and T denote the overall drop height and the time taken to 
traverse it, respectively. Two sets of data were considered: an aluminium sphere of 3.15 mm 
dia with H = 34.3 mm, T = 63.27 s; and a 30.00 mm dia Delrin sphere with H = 43.5 mm and 
T = 27.28 s. It is remarkable that the trajectories from the two different spheres collapse into one 
curve when normalized in the manner indicated above. 

The essential feature of the data is that it showed a significant deviation from linearity at 
t iT  ,,~ 0.75 and h/H ,~ 0.15 for both spheres, as each sphere decelerated in the proximity of the end 
surface of the square cylinder. The deviation from linearity was also observed with single spheres 
settling along the axis of a circular cylinder and has been studied extensively (e.g. Brenner 1961; 
Tanner 1963; Sutterby 1973). Milne-Thompson (1979) showed that, for a laterally unbounded fluid, 
the decreasing velocity was associated with an increasing repulsion of the sphere from the end 
surface mandated by an overall energy balance. 

While qualitatively similar, the BEM values were progressively higher than the experimental 
values of the drop height with increasing values of settling time. At t iT  = 0.8 this discrepancy had 
grown to 100% and did not converge to zero at t iT = 1.0. This behaviour was not unexpected, 
however; first, the particle motion in the vicinity of the end surface is not purely Stokesian because 
it is essentially non-steady, as indicated by changing slope of the spheres' trajectory. However, it 
was considered that body and drag forces predominate, such that the inertial effects could be 
neglected in the numerical simulation. Secondly, problems arise in the numerical method from 
collocation points' overlap at the two mating surfaces, such that its solution has to be terminated 
at a finite separation between them. This distance can be reduced as much as practicable, however, 
with very dense meshing. 

0.35J . . . . . . . . . . . . . . . . . .  J" . . . . . . . . . . .  B ' : ' " I  . . . . . . . . . . . . . . . . . . .  

l . . . . . . . . . . .  

BEM (a/R--0.107) 
,I, 

EXP (a/R=0.107) 

BEM (8/1:1--0.506) 
r'l 

EXP (a/R=O.506) 

. . . . . . . . . . . . . .  I' . . . . . . . . . . . . . . . . . .  I . . . . . . . . . . . . . . . . . .  4 . . . . . . . . . . . . . . . . . .  4 ....... 

• , , ,q , , , , , r . . . t i~ - " : . ' . '~ . "  "..~.:::.'."..~..'~'.'.'.~..'2"::-.~.t..~,. 
% 

0.2 0.4 0.6 0.8 1.0 
ECCENTRIC DROP RADIUS b/R 

Figure 4. Variation of the dimensionless angular velocity of 6.35 and 29.95 nun dia spheres with the 
dimensionless drop distance from the axis of a circular cylinder 59.15 mm dia. 
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Figure 5. Trajectories of  a 3.15 and 29.95 mm dia spheres in a square tank, 50 x 50 mm, in the vicinity 
of the end surface. 

SUMMARY AND CONCLUSIONS 

The terminal settling velocities and rotation rates of spherical particles settling in circular and 
square conduits were investigated experimentally and numerically. Spheres were allowed to settle 
in a viscous Newtonian fluid (silicone oil) such that only hydrodynamic forces exerted an 
appreciable effect. The terminal settling velocities and the rotation rates were measured as a 
function of the size and density of the falling sphere in the conduit over a wide range of 
experimental parameters. The experimental parameters were subjected to an exacting error analysis 
and compared with fully three-dimensional boundary element calculations. Within the bounds of 
experimental error, the experimental and numerical data showed remarkable agreement. 

Specifically, the Stoke's law wall correction factor K was evaluated from settling velocity data 
of single spheres dropped axially in square tanks. The Bohlin and Haberman corrections, originally 
developed for circular cylinders, described the BEM data well up to a/L ~0.75 and 0.4, 
respectively, on the basis of equivalence of cross-sectional areas of the square tank and a fictitious 
cylinder. The correlation of Miyamura et al. (1981), developed specifically for a square tank, 
also agreed well with Our BEM values for a/L up to ~ 0.75, while the Happel & Bart (1974) 
correction, derived for a square tank, was only satisfactory for a/L values up to ,~ 0.25. The 
Coutanceau (1971a,b) correction showed remarkably good agreement over the whole range of 
sphere sizes. 

The fully three-dimensional boundary element calculations showed good agreement, within the 
experimental error, with the data over the whole range of values of a/L. 

Experimental data for eccentric drops in square and circular tanks were quantitatively similar 
and were described well with the boundary element calculations. Owing to radially varying shear, 
a half saddle-like shape of the settling velocity and rotational velocity was observed over the 
cylinder radius. Specifically, and in both cases, the centre of the trough was on the centreline of 
the tank, and the velocity peak (the magnitude of which increased with the particle size) was 
generally within 0.35 < b/L < 0.6, where b denotes the radial displacement of sphere centroid from 
the conduit axis of symmetry. Velocities decreased rapidly in the proximity of the wall and, in the 
case of angular velocity, came close to zero for the point closest to the wall. 

The settling velocity peak was greatest for the largest sphere size (d/D = 0.506), probably as a 
consequence of, among other things, steeper shear gradients than for the case of diD = 0.107. 

As a particle approached the end surface of a square tank, it decelerated before coming to rest 
at the tank bottom. The essential feature of the data is that it showed a significant deviation from 
linearity at h/H ,~ 0.15 for both spheres, as each sphere decelerated in the proximity of the end 



TRANSLATION AND ROTATION OF SPHERES SETTLING IN CONDUITS 1073 

surface of the square cylinder due to increasing repulsion from the end surface. The BEM estimate 
of the height/time trajectory of a sphere approaching the end wall of a square cylinder showed a 
qualitative agreement with the experimental data. The BEM overpredicted the experimental 
trajectory of the settling spheres near the end surface of a square tank. This overprediction 
increased with settling time, such that it was about 100% at t /T = 0.8. The numerical value of h/H 
did not converge to zero at tiT = 1.0, but remained high. This was not unexpected, and is related 
to, among other things, the unsteady nature of the sedimentation velocity and limitations imposed 
by BEM, such as finite mesh size, close to the boundary surface. 

It is interesting, however, that the sedimentation trajectories of the two disparate spheres near 
the end wall could be shown to collapse to approximately a single curve in a figure in which the 
sphere height was normalized with respect to the overall height, and the corresponding instant of 
time was normalized with respect to the overall time it took to traverse it. 

As a continuation of this work, it is of interest experimentally to determine in detail how other 
particle shapes behave relative to a sphere in a similar set of experiments described here. 

While the results of the reported work indicate that the BEM provides an excellent tool for 
modelling sedimentation of single spheres subject to Stokes' law in axisymmetric and fully 
three-dimensional configurations, further tests ought to be made in an attempt to reduce the 
experimental error margin below that reported here. This also applies to the discrepancy between 
the experimental and numerical results for the particle trajectory near the end surface in a square 
tank. 

While single particle sedimentation data may be useful to applications in rheometry, the 
challenge of multiparticle sedimentation has a wider scope. In particular, the comparison of the 
BEM with experimental data, especially to elucidate the interparticle interaction would be of 
interest, though a more complex one to carry out experimentally, especially in concentrated 
systems. 

Extension of this work to viscoelastic fluids would provide further physical insights, as well as 
a benchmark for developing and testing constitutive models and numerical techniques. 
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